[PROLOGUE – EVERYBODY WANTS A ROCK]
[PART I – THERMOSTAT]
[PART II – MOTIVATION]
[PART III – PERSONALITY AND INDIVIDUAL DIFFERENCES]
[PART IV – LEARNING]
[PART V – DEPRESSION AND OTHER DIAGNOSES]
[PART VI – CONFLICT AND OSCILLATION]
[PART VII – NO REALLY, SERIOUSLY, WHAT IS GOING ON?]
[INTERLUDE – I LOVE YOU FOR PSYCHOLOGICAL REASONS]
[PART VIII – ARTIFICIAL INTELLIGENCE]
When people talk about the ethical treatment of animals, they tend to hash it out in terms of consciousness.
But figuring out whether animals have consciousness, and figuring out what consciousness even is, are philosophical problems so hard they may be impossible to solve.
There’s not much common ground. The main thing people are generally willing to agree on is that since they themselves are conscious, other humans are probably conscious too, since other humans behave more or less like they do and are built in more or less the same way.
So a better question might be whether or not animals feel specific emotions, especially fear and pain.
The cybernetic paradigm gives a pretty clear answer to this question: Anything that controls threat and danger has an error signal that is equivalent to fear. And anything that controls injury has an error signal that is equivalent to pain.
This allows us to say with some confidence that animals like cows and rats feel fear, pain, and many other sophisticated emotions.
There’s no reason to suspect that a cow or a rat’s subjective experience of fear is meaningfully different from a human’s. We can’t prove this, but we can appeal to the same intuition that tells you that since you are conscious, other humans are probably conscious as well.
You believe that other humans feel fear, and that their fear is as subjectively terrifying to them as your fear is to you, for a simple reason: you notice that another person’s external behavior is much the same as yours is when you feel afraid, and is happening under similar circumstances. Then, you make the reasonable assumption that since all humans are biologically similar to one another, their external behavior is likely caused by similar internal rules and structures. Since there’s no reason to suspect that basically the same behavior created by basically the same structures would be any different phenomenologically, you conclude that other humans probably have the same kind of subjective experience.
With a better model for the emotions, this same logic can extend to other animals. Assuming we are right that a cow also has a governor dedicated to keeping it safe, which generates an error signal of increasing strength as danger increases, which drives behavior much like the behavior we engage in when we are afraid, there is little reason to suspect that the cow’s subjective experience is meaningfully different from our own. At the very least, if you accept the conclusion for humans, it’s not clear why you would reject it for other animals.
This is a relatively easy conclusion to draw for other complex, social mammals. They almost certainly feel fear and pain, because we see the outward signs, and because the inside machinery is overall so similar. But it’s harder to tell as animals become less and less closely related to humans.
An animal that doesn’t bother to avoid danger or injury clearly isn’t controlling for them. But most animals do. So the question is whether these animals actually represent danger and injury within a control system, trying to minimize some error, or if they simply avoid danger and injury through stimulus-response.
Dogs probably feel fear, and even without dissecting their brains, we can reasonably assume that they use similar mechanisms as we do. They’re built on the same basic mammalian plan and inherit the same hardware. But what about squid, or clams? These animals probably avoid danger in some way, but it’s not clear that they use an approach at all like the one we do.
If an animal cybernetically controls for danger and injury, then they are producing an error signal. In this case, the argument from above applies — there’s no reason to suspect that a creature using the same algorithms to accomplish the same thing is having a notably different experience. Their error signal is probably perceived as an emotion similar to our emotions.
But if an animal’s reaction to danger is instead a programmed response to a set stimulus, then there is no control system, no feedback loop, and no error signal.
For example, we might encounter an arthropod that freezes when we walk nearby. At first this looks like a fear response. We imagine that the arthropod is terrified and trying to avoid being seen and eaten.
But through trial and error, we show that whenever a shadow passes over it, the arthropod always freezes for exactly 2.5 seconds. Let’s further say that the arthropod shows no other signs of danger avoidance. If you “threaten” it in other ways, put it in other apparently dangerous situations, it changes its behavior not at all. The only thing it responds to is a shadow suddenly passing overhead.
This suggests that, at least for the purposes of handling danger, this arthropod operates purely on stimulus-response. As a result, it probably does not feel anything like the human emotion of fear. Even if we allow that the arthropod is conscious in some sense, its conscious experience is probably very different from ours because it is based on a different kind of mechanism.
Here’s a similar example from Russel & Norvig’s Artificial Intelligence: A Modern Approach. We can’t confirm that what they describe is actually true of dung beetles — it may be apocryphal — but it’s a good illustration of the idea:
Consider the lowly dung beetle. After digging its nest and laying its eggs, it fetches a ball of dung from a nearby heap to plug the entrance. If the ball of dung is removed from its grasp en route, the beetle continues its task and pantomimes plugging the nest with the nonexistent dung ball, never noticing that it is missing. Evolution has built an assumption into the beetle’s behavior, and when it is violated, unsuccessful behavior results.
It’s hard to figure out whether an organism is controlling some variable, or whether it is running some kind of brute stimulus-response, especially if the stimulus-response routine is at all complicated. We may need to develop new experimental techniques to do this.
But every organism has to maintain homeostasis of some kind, and almost all multicellular organisms have a nervous system, which suggests they’re running some kind of feedback loop, which means some kind of error signal, which means some kind of emotion.
For now, we think this is a relatively strong argument that most other mammals experience fear and pain the same way that we do — at least as strong of an argument that other humans experience fear and pain the same way that you experience them.
Figuring out whether you are in danger requires much more of a brain than figuring out whether you have been cut or injured. So while most animals probably feel pain, some animals may not feel fear, especially those with simple nervous systems, those with very little ability to perceive their environment, and those who are immobile. There’s no value in being able to perceive danger if you can’t do anything about it.
[Next: DYNAMIC METHODS]
